If two points intersect
This commit is contained in:
parent
a7dee833f3
commit
b91b886173
67
src/Tour.cpp
67
src/Tour.cpp
@ -52,7 +52,7 @@ void Tour::draw(QGraphicsScene *scene) const {
|
||||
return;
|
||||
|
||||
Node *node = m_startNode;
|
||||
do{
|
||||
do {
|
||||
node->point.draw(scene);
|
||||
node->point.drawTo(node->next->point, scene);
|
||||
node = node->next;
|
||||
@ -116,6 +116,71 @@ void Tour::insertNearest(Point p) {
|
||||
nearest->next = newNode;
|
||||
}
|
||||
|
||||
enum class Orientation { COLLINEAR, CLOCKWISE, COUNTER_CLOCKWISE };
|
||||
|
||||
// I'm not going to pretend that I came up with this on my own.
|
||||
// The description for the algorithms is found both in the
|
||||
// linear algebra course, and on this wiki
|
||||
// https://en.wikipedia.org/w/index.php?title=Line-line_intersection&oldid=1229564037
|
||||
|
||||
// Calculate the calcOrientation of the triplet (p, q, r)
|
||||
inline Orientation calcOrientation(const Point &p, const Point &q, const Point &r) {
|
||||
int val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
|
||||
|
||||
if (val == 0)
|
||||
return Orientation::COLLINEAR;
|
||||
return (val > 0) ? Orientation::CLOCKWISE : Orientation::COUNTER_CLOCKWISE;
|
||||
}
|
||||
// True if q lies on the segment p-r
|
||||
inline bool isOnSegment(const Point &p, const Point &q, const Point &r) {
|
||||
return (q.x <= std::max(p.x, r.x) && q.x >= std::min(p.x, r.x) &&
|
||||
q.y <= std::max(p.y, r.y) && q.y >= std::min(p.y, r.y));
|
||||
}
|
||||
// Check if the two line segments p1q1 and p2q2 intersect
|
||||
bool doesPointsIntersect(const Point &p1, const Point &q1, const Point &p2,
|
||||
const Point &q2) {
|
||||
Orientation o1 = calcOrientation(p1, q1, p2);
|
||||
Orientation o2 = calcOrientation(p1, q1, q2);
|
||||
Orientation o3 = calcOrientation(p2, q2, p1);
|
||||
Orientation o4 = calcOrientation(p2, q2, q1);
|
||||
|
||||
// General case: line segments intersect if they have different orientations
|
||||
if (o1 != o2 && o3 != o4)
|
||||
return true;
|
||||
|
||||
// Special cases
|
||||
// p1, q1, p2 are collinear and p2 lies on segment p1q1
|
||||
if (o1 == Orientation::COLLINEAR && isOnSegment(p1, p2, q1))
|
||||
return true;
|
||||
// p1, q1, q2 are collinear and q2 lies on segment p1q1
|
||||
if (o2 == Orientation::COLLINEAR && isOnSegment(p1, q2, q1))
|
||||
return true;
|
||||
// p2, q2, p1 are collinear and p1 lies on segment p2q2
|
||||
if (o3 == Orientation::COLLINEAR && isOnSegment(p2, p1, q2))
|
||||
return true;
|
||||
// p2, q2, q1 are collinear and q1 lies on segment p2q2
|
||||
if (o4 == Orientation::COLLINEAR && isOnSegment(p2, q1, q2))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
bool Tour::pointsCross(Point &p1, Point &p2) {
|
||||
if (m_startNode == nullptr || m_startNode->next == m_startNode)
|
||||
return false;
|
||||
Node *n1 = m_startNode, *n2 = m_startNode->next;
|
||||
do {
|
||||
Point &q1 = n1->point, &q2 = n2->point;
|
||||
if (doesPointsIntersect(p1, p2, q1, q2))
|
||||
return true;
|
||||
|
||||
n1 = n2;
|
||||
n2 = n2->next;
|
||||
} while (n1 != m_startNode);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void Tour::insertSmallest(Point p) {
|
||||
if (m_startNode == nullptr) {
|
||||
m_startNode = new Node(p);
|
||||
|
@ -27,6 +27,8 @@ public:
|
||||
|
||||
private:
|
||||
Node* m_startNode;
|
||||
|
||||
bool pointsCross(Point &p1, Point &p2);
|
||||
};
|
||||
|
||||
#endif // TOUR_H
|
||||
|
Loading…
x
Reference in New Issue
Block a user